AD-A259 489
HIIIIIHIIIIIIIIIl!llIIIlIIlIl*IIIIIIlHIIII

Technical Report 1284

A Parallel Crossbar
Routing Chip for a
Shared Memory
Multiprocessor

Henry Minsky

MIT Artificial Intelligence Laboratory

2 ‘2.1!9‘

\ o | JAN2 1993

93-,1222 v R
LR > 9% 1 . TeA

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704.0188

Public reporting burden for this collection of InfCrmation 13 estimated t0 average | hour oer respanse. including the time 107 reviewng 1nstrUCtIONS. SE3rChING #xisting data sources,
gathering and mantaihing the dats needed, and complening and rev:ewing the ccliection of information Send comments r
collection of intormation, including suggestions for reducing this burden to Washington Headquarters Services, Oirectorate for information Operations and Reports 1215 jefferson
Davis Highway, Suite 1204 Adingten. VA 22202-4302. and 10 the Otfice of Management and Budqet, Paperwork Reduction Project (0704-0188), Washington, OC 20503

arcing this burden estimate or any other aspect of thy

2. REPORT DATE

1. AGENCY USE ONLY (Leave blank)
March 1991

3. REPORT TYPE AND DATES COVERED
technical report

4. TITLE AND SUBTITLE

Memory Multiprocessor

A Parallel Crossbar Routing Chip for a Shared

S. FUNDING NUMBERS

N00014-88-K-0825
N0OOO14-85-K-0124

6. AUTHOR(S)
Henry Minsky

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Artificial Intelligence Laboratory
545 Technology Square

Cambridge, Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

AI-TR 1284

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS{ES)

Office of Naval Research
Information Systems
Arlington, Virginia 22217

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
None

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution of this document is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This thesis describes the design and implementation of an integrated circuit and associated
packaging to be used as the building block for the data routing network of a large scale shared
memory multiprocessor system.

A general purpose multiprocessor depends on high-bandwidth, low-latency communications
between computing elements. This thesis describes the design and construction of RN1, a
novel self-routing, enhanced crossbar switch as a CMOS VLSI chip. This chip provides the
basic building block for a scalable pipelined routing network with byte-wide data channels. A
series of RN1 chips can be cascaded with no additional internal network components to form
a multistage fault-tolerant routing switch. The chip is designed to operate at clock frequencies
up to 100Mhz using Hewlett-Packard’s HP34 1.2u process. This aggressive performance goal
gemands that special attention be paid to optimization of the logic architecture and circuit

esign.

15. NUMBER OF PAGES

[14"SUSIECT TERMS (key words)

18, SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

TS Tty ~gry .
17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

parallel processing computer architecture 112
multistage routing network 16. PRICE CODE
8.00

DTt TT YT v S
19. SECURITY CLASSIFICATION

OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ASSTRACT

UNCLASSIFIED

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 739-18
298-102

A Parallel Crossbar Routing Chip for a Shared Memory

Multiprocessor
by
Henry Minsky
B.S.,Massachusetts Institute of Technology (1984)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January 1991

© Massachusetts Institute of Technology 1991

Abstract

This thesis describes the design and implementation of an integrated circuit and associated
packaging to be used as the building block for the data routing network of a large scale shared
memory multiprocessor system.

A general purpose multiprocessor depends on high-bandwidth, low-latency communications
between computing elements. This thesis describes the design and construction of RN1, a
novel self-routing, enhanced crossbar switch as a CMOS VLSI chip. This chip provides the
basic building block for a scalable pipelined routing network with byte-wide data channels. A
series of RN1 chips can be cascaded with no additional internal network components to form
a multistage fault-tolerant routing switch. The chip is designed to operate at clock frequencies
up to 100Mhz using Hewlett-Packard’s HP34 1.2u process. This aggressive performance goal
demands that special attention be paid to optimization of the logic architecture and circuit
design.

Title: Asst. Professor, Dept. Electrical Engineering and Computer Science yn7c CRALT

DTIC TAB D
Unannouneed O
Justificaty

Thesis Supervisor: Thomas Knight, Jr. | Aovession Per /

DTIC QUALITY INSPECTED g
By

Contents

1 Introduction
1.1 Building a Multi-model Parallel Processor
1.2 The Need for a Switching Network
1.3 Interprocessor Switching Network Design Goals
2 A Review Of Interprocessor Communication Networks
21 TheCrossbar Switch
2.2 A Routing Switch Made From A Single Crossbar
2.2.1 Multistage Routing Networks
2.2.2 Direct vs. Indirect Networks
2.2.3 Non-Blocking Circuit Switched Networks
224 ClosNetworks
225 BeneSNetworks. ittt it i
2.2.6 Packet and Circuit Switched Networks
2.2.7 Self Routing Networksy
23 TheTransit Network i i i i it et it e it e e e
231 TheRN1Chip ittt
3 The RN1 Parallel Crossbar Chip
3.1 Background e e e
3.11 TheNeed ForDilation,
3.1.2 ConnectionProtocol
3.2 ‘System DesignlIssues 0. iienn,

11
11
12
13

16
18
18
21
21

24
26
27
28

3.3
3.4

4.1

4.2

4.3

5.1
5.2

5.3

5.4

Chip To Chip Communication Technology
Packaging e e e e e e e
Routing Chip Communication Protocol
Chip To Chip And End To End Network Protocol
4.1.1 Byte Encoding of Command Words
Grammar to Describe RN1 Protocol
421 OpeningAConnection.t ieeennn.
422 Blocked Connectionttt eennn
423 Checksum i i e e e e e e e
424 Turning A Connection i
4.2.5 Dropping A Connection
4.2.6 Turning A Blocked Connection
4.2.7 Backward Connection,
Message Exampleso e e e e
4.3.1 Standard Message ittt
4.32 Blocked Message i e
4.3.3 Turning A Backward Connection
Architectural Description of the Chip

Overview Of Tile Internal Chip Architecture
Forward Ports i i it e e
5.2.1 Forward Port State Machine
5.2.2 Early Allocate Datapath
523 Checksum i i i e e e e
Back Port Datapath
5.3.1 Back Port State Machine
Crosspoint ATTay o ot v vt it ettt it e et it
54.1 Crosspoints v oo it v it o ittt it
542 PAndSControlSignals. 00,
5.4.3 Independent 4x4 RoutingMode,

35
36

39
39
40
41
43
43

44

45
45
45
45
47

5.44 Allocate LogicIn A Crosspoint 69

5.4.5 Dual vs. Independent Allocation 70
5.4.6 Precharged Bus Lines Enhanced With Positive Feedback 71
54.7 USELineLogic. i nnn. 73
55 Clock Generator e e 74
56 Pad Drivers e e e 76
5.7 Clock Timing And Data Transfer 76
High Performance Circuits: Design And Testing 79
6.0.1 Manchester Style Grant Propagate 80
6.02 USELines. ittt et e e 81
6.03 SetuponPhil, 81
6.04 RESET Logic i it ie e 82
6.0.5 Clock Distribution 82
6.1 Architectural Verificationand Testing 82
6.2 Architectural Level Simulator 82
6.2.1 Logic Design and Simulation 83
6.3 Testing e e 84
Chip Performance, Bugs, and Future Improvements 88
7.1 Functional Tests e 88
7.2 Performance e e e e e e e e e e 89
73 Conclusions i i it i e e e e e e e e e 93
7.3.1 Simulation: Models vs. Reality 93
732 Test Vectors. v v v v i it it e et e et et et e e e 93
74 FutureImprovements. i ittt ittt 94
7.5 Possible Architectural Extensions, . 95
Checksum Generator 29
State Machine Code 102
B.1 Forward Port State Machine., 102

B.2 Back Port State Machine 104

C RN1 Revision 2 CRC 106
D Test Vectors 109
E Datasheet 110

List of Figures

3-1
3-2
3-3

4-1
4-2
4-3
4-4

5-1
5-2
5-3
5-4
5-5
5-6
5-7

A Transit Machine 17
Asimplecrossbar e e 19
Adilated crossbar L e 20
Asimpledeltanetwork e, 23
A Clos non-blocking network00 uiiii... 24
ABeneSnetwork 25
A 16 port Transit Network composed of 4 x 2 parallel crossbars. 29
Routing Modesof RN1. 33
The RN1Chip o e e e 37
Three Dimensional Wiring 38
RN1 Message Sequence 42
Sample Message: Opening A Connection0, .. 46
Sample Message: Blocked Connection 48
Sample Message: Turning A Backward Connection 49
RN1 Internal Block Diagramt neenn.. 51
Forward Port Block Diagram 00t eun.. 52
Forward Port State Transition Diagram 54
Simple Allocate Earlyttt eenennnnn 55
Simple Allocate Early eienn.. 56
BackPort........................; 57
Back Port State Machine 59
7

5-8 Back Port Turn Detector v v i v i i e e e e e e e 60

5-9 CrosspoiNt ATTAY . .« « & i i it e e e e et et e e e e e e e 62
5-10 Crosspoint Module e e e e 63
5-11 Crosspoint Column i i i e e e e 64
5-12 Line Control Module 66
5-13 Grant Chain Logic ittt 68
5-14 Allocate Cycle i i i i i e e e e e e e e e e e e e e " 68
5-15 Allocate Logic. e e e 70
5-16 Select Logic e e e e e e 71
5-17 Carry Unit Logic i v i it i e e e e e e 72
518 Use Line Logic e 74
5-19 Clock Generator i i it ittt ittt et e e 74
5-20 Clock Generator ¢ i i it ittt ittt ettt 75
5-21 Clock Generator i ittt ii i it in ettt 75
5-22 External Clock Timing 77
5-23 Two Phase Clock Waveforms 77
5-24 Basic Two Phase FlipFlop 78
5-25 Data Transfer Timing Diagram 78
5-26 Data Transfer Timing Diagram 78
5-27 Data Transfer Timing Diagram 78
6-1 Crosspoint Low Capacitance Bus Driver 81
6-2 Spice Simulation of the dynamic Allocate Logic 85
6-3 ChipFloorplan i i ittt it 86
7-1 Scope Trace: RN1 Allocate Timing, 90
7-2 Scope Trace: Clock Generatort i i it ineunnen, 91
7-3 Scope Trace: Pad Internal Loopback 92

List of Tables

2.1

4.1
4.2
4.3

5.1
5.2
5.3
5.4

Categories Of Networks and Representative Architectures 21
Transit Network Basic Primitive Transactions 39
Byte Encoding of Command Words Understood By RN1. 40
Routing Byte Format o 43
Back Ports Logical Routing Direction 65
PO, SO, P1, S1 Encodings For 8x4 mode (SELECT =1) 65
PO, SO, P1, S1 Encodings For 4x4 mode (SELECT =0) 67
Classes of crosspoint grant priorities. oL 69
9

Acknowledgements

I would first of all like to thank Tom Knight, my thesis advisor, without whose support and
encouragement I would not have been able to get this far. His vision of engineering in general,
and large computer systems in particular, created the framework in which this work was done.
The deceptive simplicity of the router protocol is a trademark of Prof. Knight’s economical
design style. I would next like to thank André DeHon, who has been instrumen:.. in the
evolution of this design. André collaborated in the crucial early phase of the design, and
contributed many important design ideas and improvements. His encouragement was especially
valuable during the long hours of optimization, redesign, and verification which this design
entailed. Numerous discussions and arguments have greatly contributed to my understanding
of computer design. I also thank him {or encouraging me to get this thesis done, finally. Fred
Drenckhahn contributed his talent and design wizardry (and good cheer) to actually produce
all of the crucial packaging and connector technology.

I want to thank the AI Laboratory for existing in its present form, which means thanking
many of the cool laboratory directors and professors; Winston, Tomas Lozano Perez, Eric
Grimson, Rod Brooks, Marc Raibert, and of course my father Marvin Minsky, for creating the
lab and me. The AI Lab is still a place where you can follow your imagination to wherever
it leads you. The many 7th floor denizens, incdluding Ian Horswill, Paul Viola, Alan Bawden,
Sandy Wells all helped out at various times with good conversations or crucial insights. Most
of all, thanks to my wife Milan, who was always there when I needed her.

This research was done at and supported by the Massachusetts Institute of Technology
Artificial Intelligence Laboratory. Support for the Artificial Intelligence Laboratory is provided
in part by the Advanced Research Projects Agency under the Office of Naval Research contracts
ONR N00014-88-K-0825 and N00014-85-K-0124.

10

Chapter 1

Introduction

This thesis describes the design of RN1, a VLSI chip and associated packaging used to construct
a multistage interprocessor communication switch called the Transit network. The Transit
network is used to provide a data communication substrate on which to build a shared-memory
multiprocessor.

This chapter discusses the general goals of the Transit project, and the need for an in-
terprocessor switching network. Chapter 2 provides an overview of the range of switching
network design choices. Chapter 3 introduces the RN1 crossbar chip. Chapter 4 discusses the
RN1 chip’s communication protocols in depth. Chapter 5 details the internal architecture of
the chip. Chapter 6 goes into more detail about high-performance VLSI circuit approaches.

Finally, Chapter 7 provides an analysis of chip performance, bugs, and future improvements.

1.1 Building a Multi-model Parallel Processor

The goal of the Transit project is to build a family of moderate to large scale general purpose
multiprocessor systems. These systems will initially have from 64 to 256 MIMD processors,
currently commerical RISC microcontrollers, communicating with each other in a configuration
which will appear to the processors as a global shared memory space. In such a machine,
interprocessor communication can be viewed as a special case of memory access (or vice-versa).

The architecture of the Transit machine is designed to support multiple models of parallel

computation. At its core is a high-bandwidth low-latency interprocessor communication net-

11

work. This network will allow efficient implementations of a coherent shared-memory model of
computation, a message passing model, a dataflow model, systolic arrays, and even an efficient
SIMD model. Each of these computational models depends on a different mixture of bandwidth
and latency communication between processing elements.

Existing parallel architectures tend to force the users into a specific programming model.
The Transit machine is designed to present the programmer with a fast, simple hardware plat-
form with the primitive operations on which to build a parallel computation application. The
trend toward RISC processor architectures is instructive. RISC architectures moved many of
the monolithic uniprocessor computational primitives (function call, complex addressing-mode
memory references, exception handling) from hardware to software, allowing the compiler writ-
ers and programmers to utiliie the hardware in a more efficient fashion. The higher performance
of the RISC systems over CISC is due in part to the decreased cycle time gained by simpler
control paths. But gains in software performance of RISC systems are also due to the flexibility
gained by freeing the programmer or compiler writer from being locked into a specific high-
level hardware-enforced method of serial computation. Similarly, the Transit architecture is
designed to allow writers of parallel processing software to program a machine which supports
a set of fast, high-bandwidth data communication primitives, without being committed to a

single higher-level computational model.

1.2 The Need for a Switching Network

For any system with reasonably heavy memory access patterns and processors numbering more
than about eight, the data bandwidth of a single bus, no matter how wide, becomes insufficient
to provide the access needed by all processors. If there are n processors which all wish to
use the bus, the bus can, on average, provide each one with access only 1/n of the time. For
computations with frequent memory access and large communication bandwidth, more data
channels are needed to connect the processors.

A ring topology with n hops can, in the best case, increase the available bus bandwidth
by a factor of n over a simple bus, but the latency is also increased by n. Also, the increased
bandwidth is not worth as much as it seems because messages which circulate for more than

one hop on the ring tie up bus resources as they travel.

12

A higher performance and more general approach to processor interconnection method is
the switching network. This is a core fabric for communication. A switching network can be
thought of as a box, with a set of input and output ports, which provides the service of passing
data from any input to any output. Chapter 2 provides an overview of switching network

concepts.

1.3 Interprocessor Switching Network Design Goals

To provide the interprocessor communication network, we have chosen to implement a circuit-
switched, multistage, indirect network called Transit. These terms are defined in Chapter 2.
The Transit network is based on the bidelta network topology, with speda.l network and crossbar
switch design features to enhance performance and fault-tolerance. The goals for the Transit

network are
o Low-latency communication
o High-bandwidth communication
¢ Fault-tolerant communication

By low-latency communication, we mean interprocessor message times which are comparable
to today’s main-memory access times. While some parallel computation paradigms, such as
dataflow, claim to be able to mask message latency with parallelism, we would like the option
of very high speed message delivery. The initial Transit network is designed for a constant
three pipeline stage delay, with very high probability of successful message delivery on the first
transmission attempt [DeHon 90b)].

The network should support data transfers which match the input-output requirements qf
the processors. The goal for the Transit network is to support 100M bytes/sec data transfers on
each network port. Each processor node will have four network ports assigned to it on which
it can transmit one 100Mbyte/sec data stream and receive two such streams simultaneously.

The third design goal is fault-tolerance. We want our network to be able to provide full
connectivity for all processing nodes in the event of multiple failures of routing chips, wires, or

connectors. Fault tolerance in the Transit network is achieved through a combination of design

13

strategies [DeHon 90a).
e Hardware Level

As detailed in the following chapters, the basic routing switch component, the RN1 chip,
can operate as a dilated crossbar [Kruskal 86] which provides redundancy in routing con-
nections. The switch can choose one of two alternate paths to route a connection, based
on an internal pseudorandom number generator. This provides the‘basis for path dilation
in the network, a technique to improve the routing performance and fault tolerance of the

system.

e Network Topology Level

A Transit network is a member of a class of logically equivalent wiring topologies which
provide inherent redundancy in the choice of paths through the network from a source
to a destination. Research into randomized routing of the redundant paths [Leighton 89}
through these networks has shown that remarkably consistent performance is achievable,
in spite of the presence of faulty chips or wiring. The RN1 chip is designed to support

the Transit network topology.

e Layered Protocol Level
The Transit network provides what is called unreliable message delivery. The pejorative
connotation of this term is somewhat deceptive. In the network literature [Tanenbaum 81],
any protocol which gives the sender responsibility for message delivery is termed unre-
liable. The network makes a best-try attempt to deliver data to its destination. The
network provides information to the sender on the status of a connection, but if a connec-
tion is blocked, it is up to the sender to retry transmission or choose another destination.
This is the same approach used in the packet switched Internet Protocol [Comer 88). Of
course, a reliable packet or stream layer can be built on top of this protocol just as a
reliable protocol such as TCP/IP is built on an unreliable medium such as ethernet. The
robustness of the ARPA internet protocols attests to the fact that an unreliable network

level protocol does not imply unreliable end-to-end data communications.

While some routing networks claim to provide reliable message delivery in hardware, the

lower overhead of the simple unreliable protocol supported by our network hardware helps

14

us achieve very high speed connection setup and data transmission. Also, the experience
of the ARPA Internet has shown that the depending on guaranteed message delivery by

the underlying network hardware has proved to be an expensive and error-prone approach.

15

Chapter 2

A Review Of Interprocessor

Communication Networks

The family of multiprocessor computers we are building [DeHon 90b)] all have the common need
for processor nodes to communicate through a low-latency high-bandwidth network. The basic
configuration as shown in Figure 2-1 consists of a number of processor nodes with local cache
and memories and interfaces to the routing switch.

The routing switch should ideally be able to make a connection from any input terminal
to any output terminal. Since each processor node can handle only a small number of input
connections at a time, it is pointless to give the network the capability of routing all inputs
to a single output. The inverse capability, broadcasting data from a single processor to all
others, might be useful in some cases; however, interprocessor broadcast communication has
some serious pitfalls. Consider the case where a sender node broadcasts a message to every
other node in the machine and then wishes to get positive ackowledgement from all receiving
nodes. An extreme traffic jam of incoming messages will flood the source node and all paths in
the network leading to it. This is one example of a synchronization problem [Tanenbaum 87],
a very serious issue in multiprocessor designs. In general, problems will arise when several

processors are competing asynchronously for a single resource.

16

Network
Processor Interface | Ml
Cache Memory
"RNT]
Network
Processar Inteface | b
Cache Memory 1
RN1
RNI1
@ -
RNI
® —

Figure 2-1: A small Transit machine; processors with memory/network interfaces to a
routing switch implemented by a Transit routing network.

17

2.1 The Crossbar Switch

We define an n x m crossbar switch to be a component with n input ports and m output
ports, which can establish a connection between any input port and any output port. The
term crossbar comes from the old electromechanical telephone switching equipment, which had
crossed rows and columns of metal bars for the input and output ports, which could be connected

by electromagnetic mechanical contacts. Figure 2-2 shows an example of a 2 x 2 crossbar switch.

A crossbar switch can be characterized by its radiz, which defines the number of choices of
output directions the part has. Note that the radix of a crossbar is not :lways equal to the
number of output ports. An additional parameter, the dilation, characterizes how many physical
channels there are in each logical direction. For an n X m crossbar, dilation x radiz = m. The
dilation can be thought of as a measure of the redundancy of the logical channels. Figure 2-3
shows a 4 x 2 crossbar switch with dilation 2, with the output ports grouped together into
logically equivalent pairs. This switch can be thought of as switching data between two logical
directions. A dilation greater than one indicates that a logical channel can support several
simultaneous data transmissions on that channel.

In general, in a self-routing network (Section 2.2.7) with switch nodes of dilation greater than
one, the decision of which equivalent physical output channel to use is made by the individual
routing elements, with perhaps some feedback from the network as to which paths are more
likely to succeed. When a dilated crossbar is faced with the choice of several available channels
for an output, it is free to choose which available physical channel in the logically equivalent

set will be taken.

2.2 A Routing Switch Made From A Single Crossbar

A routing switch of arbitrary size, which can establish connections from any input to any
output, can be implemented using a single large crossbar switch. A true crossbar switch has
the unfortunate property that the number of active elements (crosspoints) scales as the square
of the number of inputs to the switch. The usage of resources in large crossbars is also very

wasteful; for a 1000 x 1000 crossbar, there will be 1,000,000 crosspoint elements. Only at

18

vy
Basic Crossbar (no connections)

£ 2 .

vy vy 'y

Single connections through switch

= =RE
' '

Two connections through switch

Figure 2-2: A simple 2 x 2 crossbar switch.

19

"W

Basic dilated crossbar

— +—

wow wow

Logically equivalent connection pair

Figure 2-3: A 2 x 2 crossbar switch with dilation 2.

most 1/1000 of the crosspoints in the switch can be active at once, and the remaining 999,000

crosspoint elements will be idle.

2.2.1 Multistage Routing Networks

While the crossbar provides the simplest model of a routing switch, more hardware efficient
routing networks can be built by dividing the routing hardware into a distributed or multi-layer
structure. The tradeoff is that now several stages of switching are required to route data from
the inputs to the outputs of the network. The wide range of possible multistage routing networks
can be divided into several broad classes. Table 2.2.1 shows some of the major categories of
routing topologies, and the machines which use such networks. Note that in the best cases, the
latencies of these networks is logarithmic in the number of network ports, versus constant time

for a full crossbar implementation.

Network Type Example Topology | Complexity | Latency Processor

Full Crossbar Full Crossbar N o(1) Cray Y-MP
Grid/Mesh Grid N O(VN) J-Machine
Logarithmic, Direct | Hypercube Nlog, N O(log, N) | Connection Machine
Logarithmic, Indirect | Omega Nlog. N log, N NYU Ultra
Logarithmic, Indirect | Benes 4Nlog, N | 2log, N -1 GF11

Table 2.1: Categories Of Networks and Representative Architectures

The networks which I will concentrate on in the following sections are the multistage shuffle-
ezchange networks [Gottlieb 89]. A large group of network topologies are included in this
category including banyan, Benes, delta, omega, butterfly, and many others. The basic routing
algorithms of these networks is the same, with a progression of messages advancing strictly
forward through the routing network, and depth of the network proportional to the logarithm
of the number of destination nodes. The differences between these networks have to do with

geometric layout, blocking performance, component count and network depth.

2.2.2 Direct vs. Indirect Networks

The terms direct network and indirect network are used to describe the relative topological
placement of processors and routing elements in the network. The direct networks intersperse

processing elements with routing elements. The mesh or grid topology places routing switches

21

and processors at vertices in a two or three dimensional grid. Latency in a grid or mesh of
n processors is proportional to /n or ¥/n. Data are routed by passing them from point to
point in the grid. The binary hypercube places processors and routers on the vertices of a
higher dimensional cube. Latency in an n node hypercube is proportional to log,[nr], where r is
the degree of the vertices. One example of a commericial hypercube machine is the Thinking
Machines Corporation Connection Machine.

An indirect network separates the routing network from the processors. In an indirect
network, the latency for connections through the network tends to be more uniform, since there

is usually a constant number of stages between inputs and outputs of the network.

2.2.3 Non-Blocking Circuit Switched Networks

The simplest multistage shuffle-exchange network topologies, such as the onega network, have
the property that there is one and only one path from a given input port to a given output
port. This creates the unfortunate situation that there are many possible states of the switches
such that a circuit path from a particular input to an output is blocked by another circuit
path. Thus, it is not possible to always open a connection reliably from any port to another.
Figure 2-4 shows an example of a blocked path in an 8 port network. There exists an open
connection from input port 1 to output port 1, but there is then no way for input port 5 to
connect to output port 0, because both path need to use the single upward physcial channel of

the crossbar switch in the middle stage of the network.

2.2.4 Clos Networks

It is possible to design a multistage circuit switched network in which all permutations of
sender to receiver connections can be made simultaneously, with no blocked paths. One such
multistage network is the Clos network. A non-blocking Clos network, shown in Figure 2-5 is
a n X m input three stage indirect network whose first stage is made from r n x m crossbars,
and whose middle stage is built from m r x r crossbars. It can be shown [Benes 65] that when
m 2 2n — 1 and when using a simple routing heuristic, that all possible permutations of input
to output connections can be made. For large networks, the size of the needed crossbars in Clos

network clearly makes it impractical. It also requires a “omniscient” controller to configure the

22

Figure 2-4: A simple delta network, with blocked message path.

23

nxm rxr mXxn
n ! ! / n
° ®)
o o
® L
n— ————
_— m r 0
Figure 2-5: A Clos non-blocking network.

switches for a route based on global knowledge of the state of the entire switch.

2.2.5 Bene§ Networks

Benes actually defines two kinds of non-blocking behavior. Non-blocking in the wide sense refers
to a network for which any possible set of routing switch configurations for a set of connections
through the network is possible. Non-blocking in the strict sense refers to a network along with
a set of rules that if followed carefully result in routing of all messages such that no Blocking
occurs. Benes points out that practical networks which are non-blocking in the strict sense
have not been found. The Clos network is an example of a network which is non-blocking in
the wide sense.

A practical non-blocking network can be created with a recursive formulation of a network
built from the Clos network [Hui 90]. For a Bene$ network with N = 2" ports, the construc-
tion shown in Figure 2-6 results in a non-blocking network which has 2log, N — 1 stages and

4N log, N crossbars.

N inputs, 2x2 switches

pig!

N/2 XN/2
SWITCH

N/2 XN/2
SWITCH

P!

|
(

1

Figure 2-6: A Bene$ network.

25

2.2.6 Packet and Circuit Switched Networks

There seems to be no way to build an efficient non-blocking multistage network with less than
2log N latency. And even if there was, it does not help in the case where multiple messages
really want to go to exactly the same destination, i.e., the routing problem is not a simple
permutation. There are two alternative approaches to working around the blocking problem
in multistage networks. One approach is packet switching, where hardware is added to the
network which can buffer blocked messages until the resources needed to route them beéome
available. Another approach is to stick with circuit switching and move the responsibility for
retrying blocked connections from the network to the sender.

In packet switching, the sender composes a complete packet of data, along with a destination
address, and hands it to the network. The network is usually designed to guarantee that the
packet will be delivered eventually to its destination and not lost or corrupted. Accomplishing
this goal can be much more complex than it nrst appears; consider the case where a router switch
fails in the middle of forwarding a section of a message. The network must have hardware to
deduce that data has been lost in transit, and reproduce the lost data somehow.

In a circuit switched network, on the other hand, the sender requests a connection to a
destination node, and the network opens a “virtual circuit” through the routing switches. The
sender can then send data through this circuit for as long as it wants after which the circuit is
closed down. If a path is blocked, the sender is notified and asked to try again later.

An analogy can be made between a packet switched network and the post-office, and between
a circuit switched network and the telephone network. With a packet-switched network, the
sender puts a message in an envelope, writes the address on the outside, and gives it to the
post-office. The post-office eventually delivers it. In a circuit switched network, sending a
message is like making a telephone call. The sender picks up the phone, dials the number, and
then waits for a connection. If the line is busy, the sender hangs up and tries again later. If a
connection is granted, the sender can transmit data to the destination. The connection is held
open as long as the sender is transmitting data.

There is even a kind of hybrid of packet-switching and circuit switching. [Dally 87] describes
wormhole routing which combines a kind of wormlike packet switched message delivery. A

message is divided into flits, where each flit is the smallest unit of data that can be sent across

26

a network edge in one cycle. A message snakes its way through the network, holding open
a circuit the length of its flits, and possibly being buffered or diverted in the network. The
wormhole router has the property of guaranteed delivery by a network with no component or

wiring faults.

2.2.7 Self Routing Networks

One very desirable feature to have in a multiprocessor communication network is the ability for
messages or connections to be routed through the switches based only on local knowledge avail-
able at each switch. The telephone companies, in contrast, have switches which are controlled
by a global switching program, which uses routing algorithms based on the state of the entire
network. This is acceptable when the setup time for a connection or message is short compared
to the duration taken by the transmission of data in the connection. For a telephone call, the
setup time may take milliseconds, and the call may last for minutes. In a multiprocessor sys-
tem, however, the normal mode of operation will be huge numbers of short message transactions
which represent memory references. It is impractical to build a controller to globally service
all of these simultaneous routing requests. It is necessary to have the individual switches in
the network route the messages based on the local state of the switch, and perhaps its neigh-
bors. Work has been done by Leighton [Leighton 89] on the distributed propagation of network
supervisory information by the switch elements in a multibutterfly, and Chong [Chong 90] on
.loca.l routing algorithms based on propagation of network state using analog circuit principles.

In a simple undilated multistage shuffle-exchange network the routing algorithm is simple;
there is only one logical path from any input to a specific output. Each routing switch chip
simply looks at a portion of the address field of the message and switches the connection to the
indicated output port. If that output port is busy, the message is blocked. In a packet network,

a blocked message must be either rerouted or buffered locally at the switch.

27

2.3 The Transit Network

The Transit routing network is a multistage indirect shuffle-exchange network. A Transit net-
work is built from dilated crossbar switches except at the final routing stage.! Figure 2-7 shows
a 16 port Transit network, made from 4 x 2 dilation 2 crossbars. The bold lines show all the
possible paths from port 6 to port 16.

The choice of a high dimensional indirect network vs. a direct network was made partly
because of system packaging issues. We wish to get the lowest latency message delivery possible,
and are willing to use as much wire (in the form of multilayer printed circuit boards) as we
can, within practical engineering limits, to achieve this goal. The simplicity of routing in the
delta network makes it that much easier to achieve high performance in our routing switch
components. The simple delta network [Patel 81] has serious problems, from both a fault-
tolerance and traffic congestion perspective; since there is only one unique path from any input
to any output, a single switch node failure or blocked path will prevent connection between
that input-output pair. This problem is addressed by the dilated network topology.

[Kruskal 86] defines a d-dilation of a banyan network to be the network obtained by replacing
each interstage channel in the original network by d channels. A message entering a switch may
exit using any of the d channels going to the desired successor switch at the next stage. The
Transit network topology is similar in theory to the class of d-dilated banyan networks since
the dilated crossbar switches are used. But the wiring pattern of the d-dilated banyan networks
simply replaces each network edge with a dilated edge. The Transit network splits the dilated
channels to make sure that they run to different physical routing switches in order to improve
fault tolerance.

It should be pointed out that the actual choice of next-stage switch node destinations for
dilated channels has a large impact on the tolerance of the network to internal switch failures.
[DeHon 90a] describes an analysis of how network reliability in the presence of component fail-
ures is influenced by the wiring destinations of dilated network paths. This work is based in part
on the ideas put forth by Leighton [Leighton 89] on fault tolerant routing in the multibutterfly

network.

'[DeHon 90a) explains why, from fault-tolerance considerations, the final stage of the Transit network should
be composed from simple dilation-1 crossbar switches. ’

28

>,

X

- -
.
>
. .
-

.t

e 54

-

P
Ll
pravte

W& .

A 16 port Transit Network composed of 4 x 2 parallel crossbars.

7

Figure 2

2.3.1 The RN1 Chip

The RN1 chip, described in detail in the next chapter, is an 8 x 4 dilation 2 crossbar switch
component with byte wide data channels. It can also be configured as a two independent 4 x 4
dilation 1 crossbars in the same physical package.

The Transit network to be used for the MBTA project is composed solely of RN1 chips.
The network is organized as n stages of radix r routing chips, where the number of stages
equals the logarithm, base r, of the desired number of processor nodes. The primary interface
to the network takes place at the input ports of the first stage of routing chips. Connections
are dynamically constructed through the network to reach the output ports of the final stage of
routing chips. These output ports connect to their associated processor nodes. Each processor
node has access to two input ports and two output ports. To keep network loading below fifty
percent, we can restrict a processor node to using only one of its two network input access ports
at a time. The processor node can still attend to two simultaneously incoming requests on its
network output ports.

The Transit network depends on the dilation property of the routing components to provide
good routing performance and fault tolerance. The basic mechanism depends on a pseudoran-
dom number generator built into each RN1 chip. When a new connection is being routed, if
an RN1 chip has two uncomitted output channels in the desired logical direction, one is chosen
at random. This serves to expand the number of alternative paths through the network at
each stage. This path expansion helps reduce hot spots in the network due to deterministic
communication paths. The randomized routing also makes it likely that an attempted route
through the network which fails due to a faulty wire or chip in the path will be routed through
a different path when the sender tries to reinitiate the connection.

[Gottlieb 89] makes a distinction between message-switched and circuit-switched behavior
of the network. They define message-switched traffic as using one-way only communication
channels, where a reply from a receiving processor node to a transmitting node must be routed
as a separate connection. Circuit-switched connections are able to send data bidirectionally.

The Transit network has the capability to support either message-switched or circuit-
switched traffic, i.e., a transmitting node with an open routed connection can turn the connec-

tion around and receive data from the far end without requiring the receiver to open a new

30

return connection. Our initial goal is a 64 processor node machine, so with a Transit network
built from radix 4 RN1 components, we will have network latency of log,64 = 3 through the

network, and pipeline delay of 6 for turning around a connection.

31

Chapter 3

The RN1 Parallel Crossbar Chip

3.1 Background

In Chapter 2, we defined an n x m crossbar switch to be a component with n input ports and
m output ports, which can establish a connection between any input port and any output port.
The RN1 chip is a self-routing crossbar switch with byte wide channels. It has two operating
modes; it can be an 8 x 4 crossbar with dilation 2, or a pair of independent 4 X 4 crossbars each
with dilation 1. Figure 3-1 shows a diagram of the functional equivalent of the two modes of
operation.

Figure 3-2 shows a block diagram of the RN1 part. The RN1 chip has eight forward ports,
FDPORT<A:H>, and eight back ports BKPORT<0:3[A,B]>. We called them forward and back
rather than input and output ports, because data can actually be transmitted bidirectionally
through a connection. Connections can only be initiated through a forward port, however. Data
transmitted from a forward port to a back port is said to be travelling in the forward direction.
Data transmitted from a back port to a forward port is said to be travelling in the backward
direction. Detailed description of the operation of the chip is given in following chapters.

In the 8x4 mode, RN1 can open a connection from any forward port to any available back
port. In the dual independent 4x4 mode, the RN1 acts as two separate 4x4 routers, where the
forward ports A,C,E,G can connect only to back ports 0A,1A,2A 3A, and the forward ports
B,D,F,H can connect only to back ports 0B,1B,2B,3B.

32

RN1 CHIP RN1 CHIP

V Addddd Ll bl bbbbld b LA L L L L L L L L L L 2L L L L L

N

~

&\n VAL LLRR/RRLLLRRLRLTRRLL R RSN RN

[NAASNY (33 s\J SXY AITRN AN

\
N
N

N
\

Yrrgrrs4 IIJ LLLLL L L Ll L4 tid 4 ¢

Wowww IR AAL

8 x 4 ghilation 2 mode Dual independent 4x4 dilation m¢

Figure 3-1: RN1 in 8x4(dilation 2) mode, and RN1 in dual independent 4x4 mode.

3.1.1 The Need For Dilation

An essential feature of the RN1 chip is its dilated outputs; the ability for it to route a connection
to one of two logically equivalent output ports. This mode of operation allows the construction
of a routing network with multiple paths from any source to any destination, such as the Transit
network. In fact, the number of alternate paths expands exponentially up to the middle of the
routing network [DeHon 90a]. This is in contrast to the simple crossbar switch of dilation 1 as
used in a basic omega or butterfly network.

For a network of given size, as measured by the number of ports, number of routing chips,
and number of wires, a single Transit network has better routing performance under load than
a network built with the same number of parts as two independent omega networks. Dilation
is also of great importance for fault tolerance in the network. The Transit network can have a
remarkable number of chips removed before any processor loses full connectivity with the rest

if the network [Egozy 90e].

3.1.2 Connection Protocol

RN1 supports a circuit switched connection protocol. This means that once a connection has
been opened, an arbitrary amount of data can be streamed through it, and it will be delivered
to the destination in order with a fixed latency. There is no fixed packet size, at least not
at this level. Higher level protocols can of course impose additional constraints on the data
format. A connection through the Transit network consists of a path through a set of RN1 chips
with sequential interstage open connections. The RN1 chip, and thus the Transit network, is
self-routing because a connection is created through the network with each RN1 switch in the
path making a routing decision based on purely local information. This is in contrast to an
architecture which requires routing control inputs distinct from the data ports, as is common

in telecommunications crossbar switches[Gigabit 1988][Barber 88).

3.2 System Design Issues

The RN1 chip was designed to be a part of a complete computer system. The integrated

circuit itself is only a part of the final system, and many aspects of its design were driven by

4

considerations of how it fit in to the system as a whole. The Transit project goal is to build a
practical working system within the bounds of today’s technology. Ideally the whole computer
system would be fabricated on a single monlithic substrate. The practical size of a chip today
is about 1.5 cm square, and contains only a few million transistors. The systems we want to
build are larger, and thus require many chips to be packaged and interconnected, powered,
and cooled. The system must be partitioned into modules, and the decisions of how to best
partition the system are driven by technology constraints and our imaginations.

One of the overall goals of the Transit project is the design of a physically compact and
reliable packaging and interconnect system in which hundreds of processor nodes can commu-
nicate with one another quickly. A Transit network supporting 256 processors is composed of
256 routing switch chips, and the inevitable support circuits for clocking and interfacing to the
nodes. The design decsions for RN1 were made based on a mix of contributing factors, some

of which are detailed in the following sections.

3.3 Chip To Chip Communication Technology

The on-chip worst-case delay for the RN1 is estimated to be between 8 and 12 nsec. The delay
going from on-chip to off-chip through a 5 Volt I/O pad is 4-5 nsec. The transit time between
chips is limited by the speed of light in wire, in the best case. In reality, reflections of pulses
because of impedance mismatch between drivers can increase the settling time. The 5 volt
standard CMOS output levels also takes a non-neglible time to swing.

Prof. Knight has described a design for low voltage self-terminated pad driver and reciever
[Knight 89b]. This presents a good alternative for future RN1 designs, combining the economy
and low power consumption of CMOS with the benefits of ECL-like speed. The proposed 1
Volt pad voltage swing would significantly reduce power consumption of the chip. The design
for the 1 Volt self-terminating pad drivers and receivers has been updated by Prof. Knight and
Alex Ishii. New pad test circuits are currently under evaluation in our lab.

Another option is to use ECL gate-array technology for the next version of the RN1 chip.
The current packaging scheme makes provision for liquid cooling, so the power dissipation is not
a serious problem. Motorola has ECL gate-array with series-term®.ated pad drivers available

in several impedance values.

3.4 Packaging

The first technological constraint on system partitioning comes with the number of pads that
can be placed on a silicon chip using today’s commercial technology. The constraint comes
both from the requirement that pads be located at the periphery of chips, a limited perimeter
area, and the cost of high pin-count packages. The practical limit is between 300 and 500 pins,
with packaging costs rising much faster than linear as additional pins are added. This sets
constraints on the choice of radix and dilation of our routing switch. If we commit to byte wide
ports, this leaves us a practical limit of sixteen ports on a chip. The reader might wonder at
that number, since adding up the port pins plus control signals gives a total of only around
160 pins. For even modest performance on a chip of this size, a sizable number of power and
ground pads are needed. RN1 uses 80 power and ground pin from the package to the circuit
board, and more even more power bond wires from the package to the die.

The interconr .t un network is a crucial bottleneck in the system design, because of the
very large nu:nt r of wires that must be routed; With a 256 processor system with one network
routing stage per board, up to 8,000 wires have to be routed between the routing stages. Since
the required number of chips will not all fit on a single circuit board, this means that these
thousands of wires must run between circuit boards. In a conventional computer system design,
the routing cards would be fitted to a backplane with edge connectors. If we wish to put a
four stage network onto four cards, we will need edge connectors with 4,000 pins. Current
technology bus connectors allow more like three or four hundred pins on a EuroDIN style
connector. Instead, we have decided to dispense with the backplane entirely.

We have taken a unique approach to the board-to-board connection problem, by using our
chip packages as both chip-to-board and board-to-board connectors. This is done by our use
of custom designed IC packages and connectors{Transit 90]. Our IC packages have 372 contact
points which are used to create a board-to-board connector, with the routing chip in between
(see Figure 3-3). This allows our machine to be packaged in a dense stack, effectively using all

three dimensions for wiring, as opposed to only using two in conventional packaging.

36

RN1 DATA SWITCH

—>» SW<A:H>

«—|FDPORT.A BKPORT.0A
«+—p|FDPORT.B BKPORT.0B
«—»{FDPORT.C BKPORT.1A
«—»|FDPORT.D BKPORT.1B
«—»[FDPORT.E BKPORT.2A
«—FDPORT.F BKPORT.2B
«—FDPORT.G BKPORT.3A
+«+—»FDPORT.H BKPORT.3B
—»|PHI1

—ePHI2

——p|CLK-MODE

—|RESET

—— SELECT

—= [TEST-IN

4—JTEST-OUT

PHETTTT

Figure 3-2: Schematic icon for the RN1 Chip.

37

Stack Cross-Section

——— i ’m./mnllold * . —

horizontal board) horizontal cleck ariver | .

e ——— ' -
spacer (v, Sv, gnd)
window frame Bus Ber

oo vod J—— |1]

horizontal bosrd

cover D
heatsink ——— dotug conneeter
l horizontal board

Aluminum plih/ menifold

(Diagram courtesy of Fred Drenckhahn)

Figure 3-3: The stack construction technology developed for Transit. The entire machine
is a multilayer sandwich of alternating boards and chips. Board to board connections are
by way of the chip packages sandwiched between button connectors. Fluid cooling can be
run vertically through the stack. 38

Chapter 4

Routing Chip Communication

Protocol

The Transit network is designed to provide an efficient hardware substrate on which to imple-
ment a small but flexible set of primitive network transactions. The essential primitives we
wish to implement, as defined in [DeHon 90c], are shown in Table 4.1.

In order to let the Transit network support these primitives efficiently in hardware, the RN1

chip architecture supports a simple protocol which will be described in the following sections.

4.1 Chip To Chip And End To End Network Protocol

When a network is built from RN1 chips, the protocol used by the network interface controllers
to talk to the network endpoints is the same protocol as is used internally by the network chips
to talk to one another. Thus, it is possible to detail a single command protocol which serves to

explain both the external user’s end-to-end view of the network, and the internal chip-to-chip

Operation | Description

read Read memory data from a remote destination node
vwrite Write memory data to a remote destination node
noop Open a null connection, used for network testing
reset Issue a hardware reset to a destination node

rop Network operation emulation primitive’

Table 4.1: Transit Network Basic Primitive Transactions

39

COMMAND | ENCODING | MEANING

IDLE #000000000 “This port connection is idle.

ROUTE #1laabbccdd | Open a connection to address
#aabbcedd.

DATA #1xxxxxxxx | Send this data through an active
connection.

TURN #011111111 | Turn control of channel over to
receiver, and return status
and checksum bytes.

DROP #000000000 | Drop this active connection.

HOLD #100000000 | Temporary pattern to hold connection
open during backward turn.

Table 4.2: Byte Encoding of Command Words Understood By RN1

communication protocol.

The RN1 chip is operated by sending sequences of commands and data into its forward
ports. Each forward and back port presents a bidirectional nine-bit wide datapath, consisting
of eight data bits and one control bit. The ninth bit (MSB) is the control bit. This bit is always
high when transmitting data and low when signalling occurs or no data is being transmitted.

Datais latched into the port synchronously with the clock, on the the falling edge of the external

clock.

4.1.1 Byte Encoding of Command Words

A complete data transaction using one or more cascaded chips in a network, consists of a

sequence of command and data words. Table 4.2 summarizes the valid commands which the

RN1 supports.

The meaning of the command words is summarized below.

e IDLE When a forward port is in its IDLE state, its pins are configured as inputs, and all
data presented to it with control bit low is ignored. When a back port is in IDLE state,

its pins are configured as outputs, with an idle byte pattern as its output.

After a global chip reset all of the forward ports are set to be inputs and are said to be
internally in an IDLE state. The back ports are set to be outputs with an IDLE pattern

(all zeros are driven). All connections in the internal switching matrix are cleared.

40

¢ ROUTE When talking to an idle forward port, raising the control bit indicates a request
to open a connection. The top two bits of the data word indicate which of the four logical
output directions to attempt a connection with. If the connection is successful, the routing
word is forwarded through the connection during the same cycle. In a multistage network,
the 8-bit routing word (and all other data) are rotated left two bits by the interstage
wiring, presenting the next two bits for routing in the top of the data byte at the next

stage.

e DROP The DROP command causes the current connection to be cleared. The DROP
command is forwarded through the connection before the connection is dropped. Thus,
cascaded chips in the network cause the connection to be ripped down all the way through

the network.

e TURN The TURN command causes a reversal of the direction of data transmission
on the currently open connection. In the forward direction, STATUS and CHECKSUM
bytes are returned from chips in the dead time that would normally fill the pipelined path
through the network. In the backward direction, HOLD bytes are transmitted for the

dead cycle.

The most common type of network transaction we envision is a ’round-trip’ connection.
A connection is requested to the desired target address. The bytes of a short message are
sent through<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>